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Coulomb crystals in the harmonic lattice approximation
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The dynamic structure facté(k,w) and the two-particle distribution functiagg(r,t) of ions in a Coulomb
crystal are obtained in a closed analytic form using the harmonic ldttite approximation which takes into
account all processes of multiphonon excitation and absorption. The static radial two-particle distribution
function g(r) is calculated for classicallEfw,, wherew, is the ion plasma frequengyand quantum T
<hwp) body-centered-cubithco) crystals. The results for the classical crystal are in a very good agreement
with extensive Monte CarldMC) calculations at 15r/a<7, wherea is the ion-sphere radius. The HL
Coulomb energy is calculated for classical and quantum bcc and face-centered-cubic crystals, and anharmonic
corrections are discussed. The inelastic part of the HL static structure 8{¢tQr, averaged over orientations
of wave vectokk, is shown to contain pronounced singularities at Bragg diffraction positions. The HL method
can serve as a useful tool complementary to MC and other numerical methods.

PACS numbd(s): 52.25.Zb

I. INTRODUCTION Il. STRUCTURE FACTORS IN HARMONIC LATTICE
APPROXIMATION

A model (_)f_a Coulomb crystal of point charges naun oy certainty, consider a Coulomb crystal of ions im-
form neutralizing background of charges of opposite sign is . . -
widely used in various branches of physics. The model Wagnersed n a uniform glectron backgrounq. Letr.t)
originally proposed by Wignef1] who showed that zero- =3,;8(r —r;(t)) be the Heisenberg representation operator of
temperature electron gas immersed into uniform backgrounthe ion number density, wherg(t) is the operator of théth
of positive charges crystallizes into body-centered cubidon position. The spatial Fourier harmonics of the number
(bco Coulomb crystal at sufficiently low density. Since then density operator i (1) =3;e\mathk-ri)  The dynamic
the model has been used in solid state physics for describingtycture factoS(k, ») of the charge density is defined as
electron-hole plasmée.g., Ref.[2]) and in plasma physics
for describing dusty plasmas and ion plasmas in Penning ~ e imathet
traps (e.g., Ref.[3]). Finally, Coulomb crystals of ions on S(k’“’)_ﬁfﬂc dte Stk,b), @
almost uniform background of degenerate electron gas are
known to be formed in the cores of white dwarfs and the
envelopes of neutron stars. Consequently, properties of Cou-  S(k,t)= (pk )pK(0))7— Ny o
lomb crystals are important for studying structure and evo-
lution of these astrophysical objedis.g., Ref[4]). e

As classical examples of strongly coupled systems, the N ; (enie ki) —(2m)°na(k), (2
Coulomb crystals have been the subject of extensive studies
by various numerical methods, mostly by Monte CAMC)  whereN is the number of ions in the system,is the ion
(e.g., Ref[5], and references thergirand also by molecular number density( - - - )1 means canonical averaging at tem-
dynamics (MD) (e.g., Ref.[6]), and path-integral Monte peratureT, and the last term takes into account contribution
Carlo (PIMC) (e.g., Ref.[7]). Although the results of these from the neutralizing background.
studies are very impressive, the numerical methods are time The above definition is equally valid for liquid and solid
consuming and require the most powerful computers. states of the ion system. In the solid regime, it is natural to

The aim of the present article is to draw attention to asetr;(t)=R;+U;(t), whereR,; is a lattice vector, and,(t) is

simple analytic model of Coulomb crystals. It has been eman operator of ion displacement froRy. Accordingly,
ployed recently in Ref.8] in connection with transport prop-

erties of degenerate electrons in strongly coupled plasmas of

k- k- k-u;(0
ions. We will show that this model is a useful tool for study- S(k,t)= 2 el (Ri=Ri)(el 0 i o
ing static and dynamic properties of Coulomb crystals them-
selves. —(27)°%n8(K). ©)
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The main subject of the present paper is to discuss thér cubic crystals discussed below. For these crysilk)
harmonic lattice(HL) model which consists in replacing the =r2y2/6, wherer2=(0?);, is the mean-squared ion dis-
canonical averaging- - - )t based on the exact Hamiltonian, pjacemente.g., Refs[9,10)).
by the averaging based on the corresponding oscillatory The inelastic part oB(k,t) (e.g., Ref[9]) can be rewrit-
Hamiltonian which will be denoted &s - - )1o. In order to  ten as
perform the latter averaging we expang(t) in terms of

phonon normal coordinates k)= ek R-2W gapROKKs_ 1], )
R

R 7 ) )
a(t)y=>, \/Jey(e'q"?i""vtby+e'q'Ri+lw,,tb:r/)7 )

_ 3 [€8up cofw,t+iz,/2) iR
) Vap(RU= 51 w, sinh(z,/2) on

where m is the ion massp=(q,s), s=1,2,3 enumerates (10
phonon branches, e,, and w, are, respectively, phonon _ _ )
wave vector(in the first Brillouin zong, polarization vector, Equations(6) and(9) result in the HL dynamical structure
and frequencyf),, and 61 refer to phonon annihilation and factor
creation operators. The averaging over the oscillatory Hamil- B 1 (e A
tonian,Hy==,3%w,(b,b+b'b,), reads S(k,w)=—(27)°n8(w)8(k)+ Ef _dt g iot-hel2T

(Flro=2 2 f(n)Fnn, (5) xS elk-R=2WH)+Vp(R Ik kg (11)

v v R

where n, is the number of phonons in a mode f(n,) wheret is real andr=t—i#/(2T)

—e My —e W) | i X i - . o . .
—e "*(1-e %) is the phonon density matrix in thermo- — Ajong with the HL model we will also use the simplified
dynamic equmbrlum,zv—ﬁwy/:r, andF, , is a diagonal oqel introduced in Refi]. It will be called HL1 and its
matrix element of the operatdt. Inserting Eq.(4) into (3) results will be labeled by the subscript 1. It consists in re-
we can perform the averagin@®) using the technique de- placingS’(k,t) given by Eq.(9) by a simplified expression

scribed, for instance, in Kittg9]. S;(k,t) equal to the first term of the surR=0:
The resulting structure factds(k,t) takes into account
absorption and emission ahy number of phonons; it can be Si(k,t)=S'(k)+Sj(k,t),
decomposed into the time-independent eladBragg part
and the inelastic part$(k,t)=S'(k)+S’(k,t). The elastic : — a—2W(K) [ aV(tK? _
oart is[9] Si(k,t)=e (e 1), (12

where v is defined by the equation,z(0,t) =v(t) 5.z,
S'(k)=e WK (27)3nY," s(k—G), (6)  which is the exact tensor structure for cubic crystaee
G above. The accuracy of this approximation, as discussed in
Ref. [8], is good for evaluating the quantities obtained by
integration overk (e.g., transport properties of degenerate
electrons in Coulomb crystals of ions

where G is a reciprocal lattice vector; prime over the sum
means that th&=0 term is excludedthat is done due to the
presence of uniform electron backgroynd

In Eq. (6) we have introduced the Debye-Waller factor,
efw(k)=<exp(|k- a)>To, Ill. STATIC CASE: HL VERSUS MC

In this section we compare our analytic models with MC

2
_ ﬁ< (k-e) o l>> simulations of Coulomb crystals. For this purpose we intro-
2m\ o, 2 oh duce the function
hk2< <F+1)> (7 (r 1+1J—dﬂ’ d [S(k,0)—1]e™*", (13)
=—{ — v — y r)= - ’ - € . ’
2m\ w, 2)/ 9 nl 4] (2m)3

wheren,=(e~>— 1)~ ! is the mean number of phonons in a which may be called the static two particle radial distribution
modev. The brackets function. This function is the result of an angular and a trans-
lation average of the static two particle distribution function.
1 1 In this expression €, is the solid angle element in the di-
<fV>ph:3_|\| EV: f,= 247°n S; j daf, (8 rection ofr. One can see thatm ?ng(r)dr is the ensemble
averaged number of ions in a spherical shell of radiasd
denote averaging over the phonon spectrum, which can beidth dr centered at a given ion. Thggr) is just the quan-
performed numerically, e.g., Ref10]. The integral on the tity determined from MC simulationks].
right-hand side(RHS) is meant to be taken over the first  Firstlet us use the HL1 model. From E@§) and(12) we
Brillouin zone. The latter equality in Eq7) is exact at least easily obtaing,(r)=g’(r)+gj(r), where

3
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FIG. 1. g(r) for a bcc Coulomb crystal dt=180. FIG. 2. Same as in Fig. 1 but &t==800.
g (N=1+3" e_ZW(G)sinGr The MC method is described, e.g., in RES]. The simula-
G Gr '’ tions have been done with 686 particles over nearfyNIC
configurations.
R \/ 3r? One can observe a very good agreement of HL and MC
1(r)=- 2nr2 exp — a2’ (14)  results for both values df at 1.5<r/a<7. The MC results

for g(r) are limited to half the size of the basic cell contain-
ing theN charges due to the bias from particles in the image
cells adjacent to the basic cell. Fd=686 the basic cell
length is 14.2a. Hence the MQg(r) results for this simula-

Calculation ofg”(r) in the HL model is more cumber-
some. After integration ovet=|k| and{}, the result can be

written as ) . . .
tion are valid only out ta'~7a while g(r), given by the HL
\/_ dQ, , model, remains accurate as-c. At small particle separa-
g(r)= gl(r)+2 > — e 7 tions, r <1.5a, whereg(r) becomes small, the Hy(r) de-
o==1[(2m)°m ) x viates from the MCgy(r). It is clear that the HL model can-
e not be reliable at these where strong Coulomb repulsion of
37 o7 (15  two particles dominates, and the MC déaailable down to
872nrRry r=1.1a) are more accurate. The HL1 model is quite satis-

factory atr =2.5a, beyond the closest lattice peak. The HL
wherey=(r+ oRu)/x, 7=3(r+oR)?/(4r%), p=cosd, ¥  model improves significantly HL1 at lower It is interesting
is an angle between k and R, x?=4{r2/3 that for'=180 the HL1 model agrees slightly better with
—[kakgvaB(R,O)/kz]}, and d), is the solid angle element MC for the range 2.5r/a<6 than the HL model does. With
in the direction ok. Therefore, we need to evaluate a rapidly increasingl’, however, the HL model comes into better
converging lattice sunf1l5) of 2D integrals in whichx is  agreement with MC at these although the difference be-
known once the matrix elements,;(R,0) are calculated tween the HL and HL1 models becomes very small. This
from Eg. (10). We have performed the integration over the good agreement of the HL models with the MC simulations
first Brillouin zone required in Eq.10) using the 3D Gauss after the first peak of(r) indicates that we have a very good

integration scheme described in REE1]. description of Coulomb crystals for which the HL model
The functiong(r) depends on the lattice type and on two may be used in place of MC simulations.
parameters: the classical ion coupling parametér The HL model enables one to analyze quantum effects.

=Z72¢?/(aT) and the quantum parametér=r.w,/T that  Figures 1 and 2 exhibit alsg(r) in the quantum regime at

measures the importance of zero-point lattice vibrations. I9=10. Zero-point lattice vibrations tend to reduce lattice

this caseZe is the ion chargea=(4mn/3)" 2 is the ion  peaks. The simplicity of the implementation of the HL model

sphere radius, and,=Zey4mn/m the ion plasma fre- in the quantum regime is remarkable given the complexity of

quency. direct numerical studies of the quantum effects by MC,
First consider a classical Coulomb crysta#l—0, for ~PIMC or MD simulations(see, e.g., Ref{.7]).

whichn,~T/(hw,). The functiong(r) calculated using the
HL and HL1 models for body-centered-culiicco crystals

at I'=180 and 800 are presented in Figs. 1 and 2. The pro-
nounced peak structure corresponds to the bcc lattice vectors. To get a deeper insight into the HL and HL1 models let us
These results are compared with extensive MC simulationsise them to calculate the electrostatic enddggf the crys-

IV. COULOMB ENERGY
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tal. Writing this energy as the sum of Coulomb energies of +1 27
different pairs of ions complemented by the interaction en- f dQy---= J_l d MJO do---,
ergy of ions with the electron background and the Coulomb

energy of the background itself, we arrive at the Sta”dar%hereqs is an azimuthal angle of in the adopted frame.

expression Sincex—0 asT—0 in the denominator of the exponent
. 202 under the integral in Eq19), only a narrow interval o in

_zzwnf r2dr—Jg(r)—1], (16) the viginity of u=0 contributes, and we can extend the in-
0 r tegration overu to the interval from—co to +. Further-

more, using the definition of, Eq. (15), we can rewritex as
whereg(r) is given by Eq.(13). Therefore, we can use the

(20

Z| C

functiong(r) calculated in Sec. Il to analyzd. . s xi
For the HL1 model from Eqg14) we get X“=Xg(l+e€), €= 2 (21)
0
Ul_z, _ZW(G)Za-rnZZe2 3 7%7? 4
NT < © TG? 47 Try X3=5 13~ (V3 COS b+ vy SIP + v, SiN 20),
2
=T g+2—a2—; Sgerf Z_TTH (17 X = 4u?(Vyx COS ¢+ Vyy I+ v,y SiN 26— V)

—8u \/1—M2(vxzcos¢>+vyzsin¢>),
where ¢ is the electrostatic Madelung constalit=
—0.895929 for bce and-0.895873 for face-centered-cubic wherev,z=v,4(R,0). Accordingly, we can treat as small
(fcc) lattice], and erfck) is the complementary error func- parameter and expand any integrand in @§) in powers of
tion. The second line of this equation is obtained using the: and further in powers gf. This generates the expansion in
formula for the Madelung constant derived with the Ewaldpowers ofT.

method(see, e.g., Ref.12]) We have been able to evaluate three first terms of this
o expansion. In particular, the term linear Thcontains the
, a AR| 3 ., e /@AY 3 A expression
=3 etd s> -
2R a 2T G2a? 8A* m 2
3T/ w; 1 , R?=3(R-e,)? .
(18 e e o 2 gla'R
2 ;54#” R R5
whereA is an arbitrary number. In the particular case of Eq. ph
(17) A=\/3a/(2ry). 3T/ w}) 1
For the HL model, using Eq15), we have =5 \32 Dap(@€1alip=3| ) (22
v ph
U r2 a dQ, Jra ; ; ; 0 ;
— =T+ _2_2’ _ J' e, S i whereD,; is the dynamical matrix. Combining this expres-
NT 2a® R |2R 472 X sion withr#/(2a?) and taking into account tha®, ze,,€,s
» o zw,z,/wf, (according to the basic equation for the phonon
_ spectrum we see that the expansion of the analytic part
wex - X (19 M hat the HL ion of th Iyt
x? of U in powers of T is U/(NT)=¢/T+3/2+ sU/(NT); it

reproduces not only the Madelung term, but also the correct
First, consider the classical crystal at zero temperatiire, oscillatory term 3/2, and contains a higher-order contribution
—0. Thenr—0, x—0, and we reproduce the Madelung SU/(NT)=AMT + AHT2+ ... that can be called “an-
energy,U/N—U;/N— (Z?e?/a. In the limit of smallT both  harmonic” contribution in the HL model. After some trans-
U, /N andU/N contain the main term that can be expandedformations the coefficientd;"- and A5 are reduced to the
in powers ofT plus an exponentially small terfmonanalytic sums overR containing, respectively, bilinear and triple
at T=0). For the classical crystal at affywe haver3/a®  products ofv,, (with integration overu and ¢ done ana-
=u_,/T, whereug=((w,/®,)%,n denotes a phonon spec- lytically). Numerically the sums yield\i*=10.64 andA}"
trum moment ¢_,=12.973 for bcc and 12.143 for fc =—-62.4.

The sum ovelR#0 in the last expression fdd, in Eq. The anharmonic terms occur sintg as given by Eq.
(17) is exponentially small. Thus the analytic partdf in  (16), includes exact Coulomb ener@without expanding the
the HL1 model is given only by two term&),/(NT)=¢I"  Coulomb potential in powers of ion displacemenjs How-
+Uu_,/2. We see that the HL1 model fails to reproduce cor-ever, we usg(r) in the HL approximation and thus neglect
rectly the harmonic part of the potential energy:,/2 ap- the anharmonic contribution in ion-ion correlations. There-
pears instead of conventional 3/2. fore, the HL model does not include all anharmonic effects.

On the contrary, the expansion &f/(NT) in the HL Let us compare the HL calculation U with the exact
model, Eq.(19), contains all powers of. To analyze this calculation of the first anharmonic term in the Coulomb en-
expansion, let us take any term of the sum oRerand in-  ergy of classical Coulomb crystals by Dulit8]. The author
troduce a local coordinate frame with tlzeaxis alongR.  studied the expansionsU$@(NT)=AIT +AS* T2
Then +--- and expressed the first term as
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2 1.5
o] (U3 (U9 - _
1 72NTZ 24NT|

whereU, /n! is the nth term of the Taylor expansion of the .
Coulomb energy over ion displacements, while angular 1t
brackets denote averaging with the harmonic Hamiltonian
Ho. According to DubinA$*®°=10.84 and 12.34 for bce and
fcc crystals, respectively.

It turns out that oursUt sums up a part of the infinite s
series of anharmonic corrections to the energy, denoted by 0.5 |
Dubin as 3;_,(U,)/(n!), so that Af"=T(U,)/(24NT),

ASL=T2(U4)/(6!NT), etc. (The fact that this summation ——~ HL1 model |
can be performed in a closed analytic form was known from — HL2 model |
works on the so called self-consistent phonon approximation,

e.g., Ref[14], and references thereirOur numerical value 0 P
for the bcc latticeA!'~=10.64 is very close to the value of 0 5 10 15
I'(U4)/(24NT) reported by Dubin as=10.69 (his Table 3 ka

which confirms accuracy of both calculations. The fact that
AMt=10.64 is close toA$**°=10.84 for bcc is accidental
[Dubin foundI"(U%)/(72NT?)~21.53 for bed. For instance,
from the results of Ref[13] for fcc one infers Af'"~5.63

FIG. 3. Inelastic part of the structure factorla+ 180 for clas-
sical bcc crystal.

. . . e For completeness we mention that the compressibility of

which differs strongly from the exact anharmonic coefficientye glectron background also contributes to the electrostatic

A T=12.34. energy. The relative contribution in the degenerate electron
Now let us seff=0 and analyze the quantum effects. We 55e forl2c atp=10° gcm 2 is ~10 2 (e.g., Ref.[15]).

can expand Eqsi17) and (19) in powers ofrr/a. For T apother point is that the HL model takes into account zero-

=0 the quantityr r tends to the rms amplitude of zero-point point |attice vibrations but neglects ion exchange which be-

vibrations, rr=y3fiu_;/(2mwy,), where u_, is another comes important at very high densitiesg., Ref[4]).
phonon spectrum momen&(2.7986 and 2.7198 for bcec and

fcc, respectively. The expansion ofJ;/N gives ([Z%e’/a
+U_17iwy/4 plus small nonanalytic terms. In the same man-
ner as in Eq(22) we find thatU/N=¢Z%*/a+3uifiwy/4  Finally, it is tempting to use the HL model for analyzing
+6Uo/N. The second term gives half of the total (kinetic the jon structure factors themselves. Consider the angle-
+ potential) zero-point harmonic energy of a crystal, as reaveraged static structure factorS(k)=fd Q,S(k,t

quired by the virial theorem for harmonic oscillatou;(  =0)/(4s). For the Bragg part, from Eq6) we obtain the
=0.51139 and 0.51319 for bce and fcc, respectivelshile  expression

the third terméU represents zero-point anharmonic energy
in the HL approximation.

To make the above algebra less abstract let us estimate the S'(k)y=e 2WM2720> " §(k—G)/G?, (24)
accuracy of the HL model and the relative importance of the G
anharmonicity and quantum effects. In the classical case, tak-
ing I'=170(close to the melting valuE,,= 172 for bcg, we  containing delta-function singularities &t=G, lengths of
estimate the anharmonic contribution to the total electrostatigeciprocal lattice vector&. Direct HL calculation ofS”(Kk)
energy as|sU/U|~AT®Y(|¢|T%)~4.2x10"* and 4.8 from Eq.(9) is complicated by the slow convergence of the
X 10~ for bee and fee, respectively. sum and complex dependence\of; on R. However, the

The relative error intoU introduced by using the HL main features 08’(k) can be understood from two approxi-
model isA5**(|¢|T®)~5.7x 10> for bcc (if we adopt an  mations. First, in the HL1 model we hawe,(0,0)K,Kg
estimate ofA5***~247 from the MD data on the full elec- =2W(k), and S;(k)=1—e 2" as shown by the dashed
trostatic energy presented in Table 5 of REE]) and line in Fig. 3.
[AS@L AHLY (] £|T?)~2.6x 1074 for fcc. We see that Cou-  The second, more realistic approximation will be called
lomb crystals can be regarded as highly harmonic, and thelL2 (and labeled by the subscrip}. 2t consists in adopting
accuracy of the HL model is sufficient for many practical a simplified tensor decomposition of,;(R,0) of the form
applications. Obviously, the accuracy becomes even better,s(R,0)=F(R)J,5+ RaRﬁJ(R)/RZ. If so, we can immedi-
with decreasingl. The quantum effects can be more impor- ately take the following integralsf/dQgv,.(R,0)/(4m)
tant (than the anharmonicijyin real situations. Let us take =3F(R)+J(R) and[d QRva[,(R,O)RaRﬁ/MwRZ):F(R)
12C matter at densitpy=10° gcm 2 typical for the white  +J(R) (assuming summation over repeating tensor indices
dwarf cores or neutron star crusts. The quantum contributiom and 8). On the other hand, we can calculate the same
into energy is measured by the ratio& w,/(4|¢|Z%e*/a)  integrals taking ,z(R,0) from Eq.(10) att=0. In this way
which is equal to 4.%10 ° at givenp (and grows with we come to two linear equations fB(R) andJ(R). Solving
density asp'/9). them, we obtain

V. STRUCTURE FACTORS
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3h [ 1 1 Jl(Y) (q-e,)? o,
= —( — - d - 1_ e + =
F(R) 2m<wy(n )[ oY) ,
) +1
. 3j1(y) XE’ f dMefzw(k)ﬂkRu
X1 joly y , R J-1
Ph k2F(R) +k2J(R) 2
X[e »—1]. (27
IR)= 3 /1 —. 1. () 3ja(y) A number of the first terms of the sum, say fi®®|<Rq,
2m\ w,\ " 2 Joly y whereR,/a is sufficiently large, can be calculated exactly.
To analyze the convergence of the sum oReait largeR let
3(q-e,)? us expand the exponential in the square brackets on the RHS.
X|—5—1 . (25 All the terms of the expansion which behave Rs" with
q ph n=2 lead to nicely convergent contributions $(k). The

wherey=qR, andjq(y) andj(y) are the spherical Bessel

functions. Note thaF (0)k?=2W(k), J(0)=0.

In the limit of largeR the functiong o(qR) andj,(gR) in

only problem is posed by the linear expansion term in the
classicalcase. The tail of the suri g|-g , for this term can

be regularized and calculated by the Ewald metled).,
Ref.[12]) with the following result:

Egs. (25 strongly oscillate which means that the main con-

tribution into the phonon averagingntegration overq)

comes from a small vicinity near the center of the

zone. Among three branches of phonon vibrations in simple
Coulomb crystals, twog=1,2) behave as transverse acous-
tic modes, while the third4=3) behaves as a longitudinal

optical mode fp~ wp) near the center of the Brilloui
Owing to the presence ab, 1in the denominator

(25), the main contribution at largB comes evidently from
the acoustic modes. Thus we can neglect optical phonons

dQ
Brillouin 4; leR e|k~R—2W(k)[ek2F+(k~R/R)ZJ_1]
0
2Tk%e2W() 2 1[ sinkR fC(AR
| zone. 16mnm &4 c? |RgRo KR2 a
of Egs. .
4n 2.2 2 ' sinkR AR
—k2a?/(aA
+— el )+Z|R\<R0Werf?

and setw = c.q for acoustic modes, wherg is the mean ion

sound velocity. In the high-temperature classical

+3)—T/(hcq). Then from Egs(25) at R— o we approxi-

mately obtain

- )] 1
. 1
FRI= oo Y o)~ }Elg
T él
167-rnmRS:1€§’
T (> 31(y)] < 1
. 1
AR~ mjody[”( -2z
- S
2
1
~ 16mnmR szlc_g

Our analysis shows that an appropriate value:pf+ cz’
for bcc lattice would be 67. 8%(&),3)2 From Eq.(26) we see
that F(R) and J(R) decrease aR™ ! with increasingR. In

the quantum limit¢>1 we have (1,,+ 1)—1: applying the

same arguments we deduce tRafxR™ 2 asR— .

Using Eq.(9) we have

S)(k)= J QKE tk-R— 2W(k)[ek2F(R)+(k R/R)ZJ(R)_]_]

. TNt
limit, ( % _21 C
XE'( [k+7G]%a? . 2A 29
| - 1
4A° a\r

where Ei(—x) is the exponential integral, anlis a number

to be chosen in such a way the convergence of both infinite
sums(over direct and reciprocal lattice vectpiise equally
rapid. LettingA—o we obtain a much more transparent,
although slower convergent formula for the square brackets
on the RHS of Eq(28)

_4mn oS 1I k+G| 2
[---]= k2+7rnG whi—e &2
(26) , sinkR 24,’
_2|R\<RO 2 a (29)

This expression explicitly reveals logarithmic singulari-
ties atk=G. They come from inelastic processes of one-
phonon emission or absorption in the cases in which given
wave vectork is close to a reciprocal lattice vect@. To
prove this statement let us perform Taylor expansions of
both exponentials in angular brackets in Eg). The one-
phonon processes correspond to those expansion terms
which contain products of one creation and one annihilation
operator. Thus, in the one-phonon approximat®h(k,t
=0) reads
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e~ 2W(K) N N singularities of both types coincide. The pronounced shapes
1 K t=0)=—5 > e RTR(ik-U)(—ik-U))ro  of the S'(k) peaks may, in principle, enable one to observe
b them experimentally. The structure fact®fk) in the Cou-
lomb liquid (see, e.g., Ref.16], and references thergialso

e—ZW(k) ﬁ(k’GV)Z

TN 2 > me'(qu)'(RifRi)(Znﬁ 1)  contains significant but finite and regular humps associated
e v with short-range order. This structure has been studied in

W ﬁ(k.eqs)z 1 detail by MC and other numerical methods. In contrast, the
© Es: qu(nquri), (30 studies of singular structure factors in a crystal by MC or

MD methods would be very complicated. Luckily, they can
be explored by the HL model.

Finally, it is instructive to compare the behavior $f(k)
at smallk in the HL1 and HL2 models. It is easy to see that

where the last summation is over phonon polarizatians,
=k—G is the phonon wave vector which is the given wave

vectork reduced into the first Brillouin zone by subtracting . - X X i
an appropriate reciprocal lattice vec®@r In addition, in Eq. the main contribution to inelastic scattering at thesmmes

(30) we have introduced an overall facter 2% which oM one-phonomorm,alproce_zss.eﬁwith gq=k in Eq. (30)].
comes from renormalization of the one-phonon probabilityAt thesek the HL2 Sy(k) coincides with the one-phonon
associated with emission and absorption of any number oPipi(K) and with the static structure factor of Coulomb liquid
virtual phonons(e.g., Ref.[9]). Now let us assume thak  (at the samd’) and reproduces correct hydrodynamic limit
—Gla<1 and average Eq30) over orientations ok [inte-  [17], S(k)ek?. The HL1 model, on the contrary, overesti-
grate over d), /(47)]. One can easily see that the importantMates the importance of the normal processes.

contribution into the integral comes from a narrow cdbg Let us mention that we have also used the HL2 model to
aligned alongs. Let 6,<1 be the cone angle chosen in suchcalculateg(r). HL2 appears less accurate than HL but better
a way thatGé,a<1, but G6y,>|G—k|. Integrating within  than HL1. We do not plog,(r) to avoid obscuring the fig-
this cone, we can again adopt approximation of acoustic andes.

longitudinal phonons and neglect the contribution of the lat-
ters. For simplicity, we also assume that the sound velocities
of both acoustic branches are the samg=c¢k—G|. Then,

in the classical limit we come to the integral of the type

VI. CONCLUSIONS

Thus, the harmonic lattice model allows one to study
static and dynamic properties of quantum and classical Cou-

2
dOy o (kge? 1 0% “1). @31 lomb crystals. The model is relatively simple, especially in
0 41 &1 Wl ~ac? N k=5)2 : comparison with numerical methods such as MC, PIMC, and

MD. The model can be considered as complementary to the
which contains exactly the same logarithmic divergency weraditional numerical methods. Moreover, it can be used to
got in Eq.(29). Note that in the quantum limit we would explore dynamic properties of the Coulomb crystals and
have similar integral but witk instead ofw? in the denomi-  quantum effects in the cases where the use of numerical
nator of the integrand. The integration would yield the ex-methods is especially complicated. For instance, the har-
pression proportional ttk— G|, i.e., the logarithmic singu- monic lattice model predicts singularities of the static inelas-
larity would be replaced by a weaker kinklike feature.tic structure factor at the positions of Bragg diffraction
Therefore, thek=G features of the inelastic structure factor peaks. We expect also that the HL model can describe accu-
S’(k) in the quantum limit are expected to be less pro-rately non-Coulomb crystals whose lattice vibration proper-
nounced than in the classical limit but could be, neverthelesdies are well determined.

quite visible.

After this simplified consideration let us return to qualita-
tive analysis. We have calculat&(k) in the classical limit
using the HL2 approximation as prescribed above and veri- We are grateful to N. Ashcroft for discussions. The work
fied that the result is indeed independenRyf(in the range  of D.A.B. and D.G.Y. was supported in part by RFBRrant
from ~30a to 10(a) andA. The resultingS;(k) is plotted in -~ No. 99-02-18099 INTAS (96-0542, and KBN (2 P0O3D
Fig. 3 by the solid line. 014 13. The work of H.E.D.W. and W.L.S. was performed

Thus, in a crystal, the inelastic part of the structure factounder the auspices of the U.S. Department of Energy under
S’(k) appears to be singular in addition to the Bragtastio Contract No. W-7405-ENG-48 for the Lawrence Livermore
part S’ (k). The singularities ofS"(k) are weaker than the National Laboratory and W-7405-ENG-36 for the Los Ala-
Bragg diffraction delta functions i’ (k); the positions of mos National Laboratory.
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