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Coulomb crystals in the harmonic lattice approximation
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The dynamic structure factorS̃(k,v) and the two-particle distribution functiong(r ,t) of ions in a Coulomb
crystal are obtained in a closed analytic form using the harmonic lattice~HL! approximation which takes into
account all processes of multiphonon excitation and absorption. The static radial two-particle distribution
function g(r ) is calculated for classical (T*\vp , wherevp is the ion plasma frequency! and quantum (T
!\vp) body-centered-cubic~bcc! crystals. The results for the classical crystal are in a very good agreement
with extensive Monte Carlo~MC! calculations at 1.5&r /a&7, wherea is the ion-sphere radius. The HL
Coulomb energy is calculated for classical and quantum bcc and face-centered-cubic crystals, and anharmonic
corrections are discussed. The inelastic part of the HL static structure factorS9(k), averaged over orientations
of wave vectork, is shown to contain pronounced singularities at Bragg diffraction positions. The HL method
can serve as a useful tool complementary to MC and other numerical methods.

PACS number~s!: 52.25.Zb
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I. INTRODUCTION

A model of a Coulomb crystal of point charges in a un
form neutralizing background of charges of opposite sign
widely used in various branches of physics. The model w
originally proposed by Wigner@1# who showed that zero
temperature electron gas immersed into uniform backgro
of positive charges crystallizes into body-centered cu
~bcc! Coulomb crystal at sufficiently low density. Since the
the model has been used in solid state physics for descri
electron-hole plasma~e.g., Ref.@2#! and in plasma physics
for describing dusty plasmas and ion plasmas in Penn
traps ~e.g., Ref.@3#!. Finally, Coulomb crystals of ions on
almost uniform background of degenerate electron gas
known to be formed in the cores of white dwarfs and t
envelopes of neutron stars. Consequently, properties of C
lomb crystals are important for studying structure and e
lution of these astrophysical objects~e.g., Ref.@4#!.

As classical examples of strongly coupled systems,
Coulomb crystals have been the subject of extensive stu
by various numerical methods, mostly by Monte Carlo~MC!
~e.g., Ref.@5#, and references therein!, and also by molecula
dynamics ~MD! ~e.g., Ref. @6#!, and path-integral Monte
Carlo ~PIMC! ~e.g., Ref.@7#!. Although the results of thes
studies are very impressive, the numerical methods are
consuming and require the most powerful computers.

The aim of the present article is to draw attention to
simple analytic model of Coulomb crystals. It has been e
ployed recently in Ref.@8# in connection with transport prop
erties of degenerate electrons in strongly coupled plasma
ions. We will show that this model is a useful tool for stud
ing static and dynamic properties of Coulomb crystals the
selves.
PRE 611063-651X/2000/61~2!/1912~8!/$15.00
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II. STRUCTURE FACTORS IN HARMONIC LATTICE
APPROXIMATION

For certainty, consider a Coulomb crystal of ions im
mersed in a uniform electron background. Letr̂(r ,t)
5( id„r2 r̂ i(t)… be the Heisenberg representation operato
the ion number density, wherer̂ i(t) is the operator of thei th
ion position. The spatial Fourier harmonics of the numb
density operator isr̂k(t)5( ie

2\ imathk• r̂ i (t). The dynamic

structure factorS̃(k,v) of the charge density is defined as

S̃~k,v!5
1

2pE2`

1`

dt e2\ imathvtS~k,t !, ~1!

S~k,t !5
1

N
^r̂k

†~ t !r̂k~0!&T2Ndk,0

5
1

N (
i j

^eık•r i (t)e2ık•r j (0)&T2~2p!3nd~k!, ~2!

whereN is the number of ions in the system,n is the ion
number density,̂ •••&T means canonical averaging at tem
peratureT, and the last term takes into account contributi
from the neutralizing background.

The above definition is equally valid for liquid and sol
states of the ion system. In the solid regime, it is natura
set r̂ i(t)5Ri1ûi(t), whereRi is a lattice vector, andûi(t) is
an operator of ion displacement fromRi . Accordingly,

S~k,t !5
1

N (
i j

eık•(Ri2Rj )^eık•ûi (t)e2ık•ûj (0)&T

2~2p!3nd~k!. ~3!
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The main subject of the present paper is to discuss
harmonic lattice~HL! model which consists in replacing th
canonical averaginĝ•••&T based on the exact Hamiltonian
by the averaging based on the corresponding oscilla
Hamiltonian which will be denoted aŝ•••&T0. In order to
perform the latter averaging we expandûi(t) in terms of
phonon normal coordinates

ûi~ t !5(
n
A \

2mNvn
en~eıq•Ri2ıvntb̂n1e2ıq•Ri1ıvntb̂n

†!,

~4!

where m is the ion mass,n[(q,s), s51,2,3 enumerates
phonon branches;q, en , and vn are, respectively, phono
wave vector~in the first Brillouin zone!, polarization vector,
and frequency;b̂n and b̂n

† refer to phonon annihilation an
creation operators. The averaging over the oscillatory Ham

tonian,H05(n
1
2 \vn(b̂nb̂n

†1b̂n
†b̂n), reads

^F̂&T05(
n

(
nn

`

f ~nn!Fnnnn
, ~5!

where nn is the number of phonons in a moden, f (nn)
5e2nnzn(12e2zn) is the phonon density matrix in thermo
dynamic equilibrium,zn5\vn /T, and Fnnnn

is a diagonal

matrix element of the operatorF̂. Inserting Eq.~4! into ~3!
we can perform the averaging~5! using the technique de
scribed, for instance, in Kittel@9#.

The resulting structure factorS(k,t) takes into accoun
absorption and emission ofanynumber of phonons; it can b
decomposed into the time-independent elastic~Bragg! part
and the inelastic part,S(k,t)5S8(k)1S9(k,t). The elastic
part is @9#

S8~k!5e22W(k)~2p!3n(
G

8 d~k2G!, ~6!

whereG is a reciprocal lattice vector; prime over the su
means that theG50 term is excluded~that is done due to the
presence of uniform electron background!.

In Eq. ~6! we have introduced the Debye-Waller facto
e2W(k)5^exp(ık•û)&T0,

W~k!5
3\

2m K ~k•en!2

vn
S n̄n1

1

2D L
ph

5
\k2

2mK 1

vn
S n̄n1

1

2D L
ph

, ~7!

wheren̄n5(ezn21)21 is the mean number of phonons in
moden. The brackets

^ f n&ph5
1

3N (
n

f n5
1

24p3n (
s51

3 E dq f n ~8!

denote averaging over the phonon spectrum, which can
performed numerically, e.g., Ref.@10#. The integral on the
right-hand side~RHS! is meant to be taken over the fir
Brillouin zone. The latter equality in Eq.~7! is exact at least
e

ry

il-

be

for cubic crystals discussed below. For these crystals,W(k)
5r T

2k2/6, where r T
25^û2&T0 is the mean-squared ion dis

placement~e.g., Refs.@9,10#!.
The inelastic part ofS(k,t) ~e.g., Ref.@9#! can be rewrit-

ten as

S9~k,t !5(
R

eik•R22W(k)@evab(R,t)kakb21#, ~9!

vab~R,t !5
3\

2mK enaenb

vn

cos~vnt1 izn/2!

sinh~zn/2!
eiq•RL

ph

.

~10!

Equations~6! and~9! result in the HL dynamical structure
factor

S̃~k,v!52~2p!3nd~v!d~k!1
1

2pE2`

1`

dt e2 ivt2\v/2T

3(
R

eik•R22W(k)1vab(R,t)kakb, ~11!

wheret is real andt5t2 i\/(2T).
Along with the HL model we will also use the simplifie

model introduced in Ref.@8#. It will be called HL1 and its
results will be labeled by the subscript 1. It consists in
placingS9(k,t) given by Eq.~9! by a simplified expression
S19(k,t) equal to the first term of the sum,R50:

S1~k,t !5S8~k!1S19~k,t !,

S19~k,t !5e22W(k)~ev(t)k2
21!, ~12!

where v is defined by the equationvab(0,t)5v(t)dab ,
which is the exact tensor structure for cubic crystals~see
above!. The accuracy of this approximation, as discussed
Ref. @8#, is good for evaluating the quantities obtained
integration overk ~e.g., transport properties of degenera
electrons in Coulomb crystals of ions!.

III. STATIC CASE: HL VERSUS MC

In this section we compare our analytic models with M
simulations of Coulomb crystals. For this purpose we int
duce the function

g~r !511
1

nE dV r

4p E dk

~2p!3
@S~k,0!21#e2 ik•r, ~13!

which may be called the static two particle radial distributi
function. This function is the result of an angular and a tra
lation average of the static two particle distribution functio
In this expression dV r is the solid angle element in the d
rection ofr . One can see that 4pr 2ng(r )dr is the ensemble
averaged number of ions in a spherical shell of radiusr and
width dr centered at a given ion. Thusg(r ) is just the quan-
tity determined from MC simulations@5#.

First let us use the HL1 model. From Eqs.~6! and~12! we
easily obtaing1(r )5g8(r )1g19(r ), where
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g8~r !511(
G

8 e22W(G)
sinGr

Gr
,

g19~r !52
3A3p

8p2nrT
3

expS 2
3r 2

4r T
2D . ~14!

Calculation ofg9(r ) in the HL model is more cumber
some. After integration overk5uku andV r the result can be
written as

g~r !5g1~r !1(
R

8 (
s561

F Ap

~2p!3rn
E dVk

x2
ge2g2

1
A3ps

8p2nrRrT

e2hG , ~15!

whereg5(r 1sRm)/x, h53(r 1sR)2/(4r T
2), m5cosq, q

is an angle between k and R, x254$r T
2/3

2@kakbvab(R,0)/k2#%, and dVk is the solid angle elemen
in the direction ofk. Therefore, we need to evaluate a rapid
converging lattice sum~15! of 2D integrals in whichx is
known once the matrix elementsvab(R,0) are calculated
from Eq. ~10!. We have performed the integration over t
first Brillouin zone required in Eq.~10! using the 3D Gauss
integration scheme described in Ref.@11#.

The functiong(r ) depends on the lattice type and on tw
parameters: the classical ion coupling parameterG
5Z2e2/(aT) and the quantum parameteru5\vp /T that
measures the importance of zero-point lattice vibrations
this caseZe is the ion charge,a5(4pn/3)21/3 is the ion
sphere radius, andvp5ZeA4pn/m the ion plasma fre-
quency.

First consider a classical Coulomb crystal,u→0, for
which n̄n'T/(\vn). The functionsg(r ) calculated using the
HL and HL1 models for body-centered-cubic~bcc! crystals
at G5180 and 800 are presented in Figs. 1 and 2. The p
nounced peak structure corresponds to the bcc lattice vec
These results are compared with extensive MC simulatio

FIG. 1. g(r ) for a bcc Coulomb crystal atG5180.
n

o-
rs.
s.

The MC method is described, e.g., in Ref.@5#. The simula-
tions have been done with 686 particles over nearly 108 MC
configurations.

One can observe a very good agreement of HL and
results for both values ofG at 1.5&r /a&7. The MC results
for g(r ) are limited to half the size of the basic cell contai
ing theN charges due to the bias from particles in the ima
cells adjacent to the basic cell. ForN5686 the basic cell
length is 14.2a. Hence the MCg(r ) results for this simula-
tion are valid only out tor'7a while g(r ), given by the HL
model, remains accurate asr→`. At small particle separa-
tions, r &1.5a, whereg(r ) becomes small, the HLg(r ) de-
viates from the MCg(r ). It is clear that the HL model can
not be reliable at theser, where strong Coulomb repulsion o
two particles dominates, and the MC data~available down to
r *1.1a) are more accurate. The HL1 model is quite sat
factory atr *2.5a, beyond the closest lattice peak. The H
model improves significantly HL1 at lowerr. It is interesting
that for G5180 the HL1 model agrees slightly better wi
MC for the range 2.5&r /a&6 than the HL model does. With
increasingG, however, the HL model comes into bett
agreement with MC at theser, although the difference be
tween the HL and HL1 models becomes very small. T
good agreement of the HL models with the MC simulatio
after the first peak ofg(r ) indicates that we have a very goo
description of Coulomb crystals for which the HL mod
may be used in place of MC simulations.

The HL model enables one to analyze quantum effe
Figures 1 and 2 exhibit alsog(r ) in the quantum regime a
u510. Zero-point lattice vibrations tend to reduce latti
peaks. The simplicity of the implementation of the HL mod
in the quantum regime is remarkable given the complexity
direct numerical studies of the quantum effects by M
PIMC or MD simulations~see, e.g., Ref.@7#!.

IV. COULOMB ENERGY

To get a deeper insight into the HL and HL1 models let
use them to calculate the electrostatic energyU of the crys-

FIG. 2. Same as in Fig. 1 but atG5800.
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tal. Writing this energy as the sum of Coulomb energies
different pairs of ions complemented by the interaction
ergy of ions with the electron background and the Coulo
energy of the background itself, we arrive at the stand
expression

U

N
52pnE

0

`

r 2dr
Z2e2

r
@g~r !21#, ~16!

whereg(r ) is given by Eq.~13!. Therefore, we can use th
function g(r ) calculated in Sec. III to analyzeU.

For the HL1 model from Eqs.~14! we get

U1

NT
5(

G
8 e22W(G)

2pnZ2e2

TG2 2A 3

4p

Z2e2

TrT

5GF z1
r T

2

2a2 2(
R

8
a

2R
erfcSA3R

2r T
D G , ~17!

where z is the electrostatic Madelung constant@5
20.895929 for bcc and20.895873 for face-centered-cub
~fcc! lattice#, and erfc(x) is the complementary error func
tion. The second line of this equation is obtained using
formula for the Madelung constant derived with the Ewa
method~see, e.g., Ref.@12#!

z5(
R

8
a

2R
erfcS AR

a D1
3

2 (
G

8
e2G2a2/(4A2)

G2a2
2

3

8A2 2
A

Ap
,

~18!

whereA is an arbitrary number. In the particular case of E
~17! A5A3a/(2r T).

For the HL model, using Eq.~15!, we have

U

NT
5GH z1

r T
2

2a22(
R

8 F a

2R
2E dVk

4p2

Apa

x

3expS 2
R2m2

x2 D G J . ~19!

First, consider the classical crystal at zero temperatureT
→0. Then r T→0, x→0, and we reproduce the Madelun
energy,U/N→U1 /N→zZ2e2/a. In the limit of smallT both
U1 /N andU/N contain the main term that can be expand
in powers ofT plus an exponentially small term~nonanalytic
at T50). For the classical crystal at anyT we haver T

2/a2

5u22 /G, whereus5^(vn /vp)s&ph denotes a phonon spec
trum moment (u22512.973 for bcc and 12.143 for fcc!.

The sum overRÞ0 in the last expression forU1 in Eq.
~17! is exponentially small. Thus the analytic part ofU1 in
the HL1 model is given only by two terms,U1 /(NT)5zG
1u22/2. We see that the HL1 model fails to reproduce c
rectly the harmonic part of the potential energy:u22/2 ap-
pears instead of conventional 3/2.

On the contrary, the expansion ofU/(NT) in the HL
model, Eq.~19!, contains all powers ofT. To analyze this
expansion, let us take any term of the sum overR, and in-
troduce a local coordinate frame with thez axis alongR.
Then
f
-
b
d

e

.

d

-

E d Vk•••5E
21

11

d mE
0

2p

d f•••, ~20!

wheref is an azimuthal angle ofk in the adopted frame
Since x→0 as T→0 in the denominator of the exponen
under the integral in Eq.~19!, only a narrow interval ofm in
the vicinity of m50 contributes, and we can extend the i
tegration overm to the interval from2` to 1`. Further-
more, using the definition ofx, Eq. ~15!, we can rewritex as

x25x0
2~11e!, e5

xm
2

x0
2 , ~21!

x0
25

4

3
r T

224~vxx cos2f1vyy sin2f1vxy sin 2f!,

xm
2 54m2~vxx cos2f1vyy sin2f1vxy sin 2f2vzz!

28m A12m2~vxz cosf1vyz sinf!,

wherevab5vab(R,0). Accordingly, we can treate as small
parameter and expand any integrand in Eq.~19! in powers of
e and further in powers ofm. This generates the expansion
powers ofT.

We have been able to evaluate three first terms of
expansion. In particular, the term linear inT contains the
expression

3T

2 K vp
2

vn
2

1

4pn (
R

8
R223~R•en!2

R5
eiq•RL

ph

5
3T

2 K vp
2

vn
2 FDab~q!enaenb2

1

3G L
ph

, ~22!

whereDab is the dynamical matrix. Combining this expre
sion with r T

2/(2a2) and taking into account thatDabenaenb

5vn
2/vp

2 ~according to the basic equation for the phon
spectrum! we see that the HL expansion of the analytic p
of U in powers ofT is U/(NT)5zG13/21dUT /(NT); it
reproduces not only the Madelung term, but also the cor
oscillatory term 3/2, and contains a higher-order contribut
dUT /(NT)5A1

HL/G1A2
HL/G21••• that can be called ‘‘an-

harmonic’’ contribution in the HL model. After some trans
formations the coefficientsA1

HL and A2
HL are reduced to the

sums overR containing, respectively, bilinear and tripl
products ofvab ~with integration overm and f done ana-
lytically!. Numerically the sums yieldA1

HL510.64 andA2
HL

5262.4.
The anharmonic terms occur sinceU, as given by Eq.

~16!, includes exact Coulomb energy~without expanding the
Coulomb potential in powers of ion displacementsu!. How-
ever, we useg(r ) in the HL approximation and thus negle
the anharmonic contribution in ion-ion correlations. The
fore, the HL model does not include all anharmonic effec

Let us compare the HL calculation ofdUT with the exact
calculation of the first anharmonic term in the Coulomb e
ergy of classical Coulomb crystals by Dubin@13#. The author
studied the expansiondUT

exact/(NT)5A1
exact/G1A2

exact/G2

1••• and expressed the first term as
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A1
exact5GF ^U3

2&
72NT2 2

^U4&
24NTG , ~23!

whereUn /n! is the nth term of the Taylor expansion of th
Coulomb energy over ion displacements, while angu
brackets denote averaging with the harmonic Hamilton
H0. According to DubinA1

exact510.84 and 12.34 for bcc an
fcc crystals, respectively.

It turns out that ourdUT sums up a part of the infinite
series of anharmonic corrections to the energy, denoted
Dubin as (n53

` ^Un&/(n!), so that A1
HL5G^U4&/(24NT),

A2
HL5G2^U6&/(6!NT), etc. ~The fact that this summation

can be performed in a closed analytic form was known fr
works on the so called self-consistent phonon approximat
e.g., Ref.@14#, and references therein.! Our numerical value
for the bcc latticeA1

HL510.64 is very close to the value o
G^U4&/(24NT) reported by Dubin as'10.69 ~his Table 3!
which confirms accuracy of both calculations. The fact t
A1

HL510.64 is close toA1
exact510.84 for bcc is accidenta

@Dubin foundG^U3
2&/(72NT2)'21.53 for bcc#. For instance,

from the results of Ref.@13# for fcc one infers,A1
HL'5.63

which differs strongly from the exact anharmonic coefficie
A1

exact512.34.
Now let us setT50 and analyze the quantum effects. W

can expand Eqs.~17! and ~19! in powers of r T /a. For T
50 the quantityr T tends to the rms amplitude of zero-poi
vibrations, r T5A3\u21 /(2mvp), where u21 is another
phonon spectrum moment (52.7986 and 2.7198 for bcc an
fcc, respectively!. The expansion ofU1 /N gives zZ2e2/a
1u21\vp/4 plus small nonanalytic terms. In the same ma
ner as in Eq.~22! we find thatU/N5zZ2e2/a13u1\vp/4
1dU0 /N. The second term gives half of the total (kinet
1potential) zero-point harmonic energy of a crystal, as
quired by the virial theorem for harmonic oscillator (u1
50.51139 and 0.51319 for bcc and fcc, respectively!, while
the third termdU0 represents zero-point anharmonic ener
in the HL approximation.

To make the above algebra less abstract let us estimat
accuracy of the HL model and the relative importance of
anharmonicity and quantum effects. In the classical case,
ing G5170~close to the melting valueGm5172 for bcc!, we
estimate the anharmonic contribution to the total electrost
energy as udUT /Uu'A1

exact/(uzuG2)'4.231024 and 4.8
31024 for bcc and fcc, respectively.

The relative error intoU introduced by using the HL
model isA2

exact/(uzuG3)'5.731025 for bcc ~if we adopt an
estimate ofA2

exact'247 from the MD data on the full elec
trostatic energy presented in Table 5 of Ref.@6#! and
@A1

exact2A1
HL#/(uzuG2)'2.631024 for fcc. We see that Cou

lomb crystals can be regarded as highly harmonic, and
accuracy of the HL model is sufficient for many practic
applications. Obviously, the accuracy becomes even be
with decreasingT. The quantum effects can be more impo
tant ~than the anharmonicity! in real situations. Let us take
12C matter at densityr5106 g cm23 typical for the white
dwarf cores or neutron star crusts. The quantum contribu
into energy is measured by the ratio 3u1\vp /(4uzuZ2e2/a)
which is equal to 4.731023 at given r ~and grows with
density asr1/6).
r
n

by

n,

t

t

-

-

y

the
e
k-

ic

e
l
er

n

For completeness we mention that the compressibility
the electron background also contributes to the electros
energy. The relative contribution in the degenerate elect
case for 12C at r5106 g cm23 is ;1022 ~e.g., Ref.@15#!.
Another point is that the HL model takes into account ze
point lattice vibrations but neglects ion exchange which
comes important at very high densities~e.g., Ref.@4#!.

V. STRUCTURE FACTORS

Finally, it is tempting to use the HL model for analyzin
the ion structure factors themselves. Consider the an
averaged static structure factorS(k)5*d VkS(k,t
50)/(4p). For the Bragg part, from Eq.~6! we obtain the
expression

S8~k!5e22W(k)2p2n(
G

8 d~k2G!/G2, ~24!

containing delta-function singularities atk5G, lengths of
reciprocal lattice vectorsG. Direct HL calculation ofS9(k)
from Eq. ~9! is complicated by the slow convergence of t
sum and complex dependence ofvab on R. However, the
main features ofS9(k) can be understood from two approx
mations. First, in the HL1 model we havevab(0,0)kakb

52W(k), and S19(k)512e22W(k) as shown by the dashe
line in Fig. 3.

The second, more realistic approximation will be call
HL2 ~and labeled by the subscript 2!. It consists in adopting
a simplified tensor decomposition ofvab(R,0) of the form
vab(R,0)5F(R)dab1RaRbJ(R)/R2. If so, we can immedi-
ately take the following integrals*dVRvaa(R,0)/(4p)
53F(R)1J(R) and*d VRvab(R,0)RaRb /(4pR2)5F(R)
1J(R) ~assuming summation over repeating tensor indi
a and b). On the other hand, we can calculate the sa
integrals takingvab(R,0) from Eq.~10! at t50. In this way
we come to two linear equations forF(R) andJ(R). Solving
them, we obtain

FIG. 3. Inelastic part of the structure factor atG5180 for clas-
sical bcc crystal.
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F~R!5
3\

2m K 1

vn
S n̄n1

1

2D H j 0~y!2
j 1~y!

y
2

~q•en!2

q2

3F j 0~y!2
3 j 1~y!

y G J L
ph

,

J~R!5
3\

2m K 1

vn
S n̄n1

1

2D F j 0~y!2
3 j 1~y!

y G
3F3~q•en!2

q2
21G L

ph

, ~25!

wherey5qR, and j 0(y) and j 1(y) are the spherical Besse
functions. Note thatF(0)k252W(k), J(0)50.

In the limit of largeR the functionsj 0(qR) and j 1(qR) in
Eqs.~25! strongly oscillate which means that the main co
tribution into the phonon averaging~integration overq!
comes from a small vicinity near the center of the Brillou
zone. Among three branches of phonon vibrations in sim
Coulomb crystals, two (s51,2) behave as transverse acou
tic modes, while the third (s53) behaves as a longitudina
optical mode (v'vp) near the center of the Brillouin zone
Owing to the presence ofvn

21 in the denominator of Eqs
~25!, the main contribution at largeR comes evidently from
the acoustic modes. Thus we can neglect optical phon
and setv5csq for acoustic modes, wherecs is the mean ion
sound velocity. In the high-temperature classical limit, (n̄n

1 1
2 )→T/(\csq). Then from Eqs.~25! at R→` we approxi-

mately obtain

F~R!'
T

4p2nmRE0

`

d yF j 0~y!2
j 1~y!

y G(
s51

2
1

cs
2

5
T

16pnmR (
s51

2
1

cs
2 ,

J~R!'2
T

4p2nmRE0

`

d yF j 0~y!2
3 j 1~y!

y G(
s51

2
1

cs
2

5
T

16pnmR (
s51

2
1

cs
2 . ~26!

Our analysis shows that an appropriate value ofc1
221c2

22

for bcc lattice would be 67.85/(avp)2. From Eq.~26! we see
that F(R) and J(R) decrease asR21 with increasingR. In
the quantum limitu@1 we have (n̄n1 1

2 )→ 1
2 ; applying the

same arguments we deduce thatF,J}R22 asR→`.
Using Eq.~9! we have

S29~k!5E d Vk

4p (
R

eık•R22W(k)@ek2F(R)1(k•R/R)2J(R)21#
-

le
-

ns

512e22W(k)1
1

2

3(
R

8 E
21

11

d m e22W(k)1ıkRm

3@ek2F(R)1k2J(R)m2
21#. ~27!

A number of the first terms of the sum, say foruRu,R0,
whereR0 /a is sufficiently large, can be calculated exact
To analyze the convergence of the sum overR at largeR let
us expand the exponential in the square brackets on the R
All the terms of the expansion which behave asR2n with
n>2 lead to nicely convergent contributions toS29(k). The
only problem is posed by the linear expansion term in
classicalcase. The tail of the sum,( uRu.R0

, for this term can
be regularized and calculated by the Ewald method~e.g.,
Ref. @12#! with the following result:

E dVk

4p (
uRu.R0

eık•R22W(k)@ek2F1(k•R/R)2J21#

'
2Tk2e22W(k)

16pnm (
s51

2
1

cs
2 F (

uRu.R0

sinkR

kR2
erfcS AR

a D
1

4pn

k2 e2k2a2/(4A2)1( uRu,R0
8

sinkR

kR2
erfS AR

a D
1(

G
8 (

t561

pnt

kG

3EiS 2
@k1tG#2a2

4A2 D1
2A

aAp
G , ~28!

where Ei(2x) is the exponential integral, andA is a number
to be chosen in such a way the convergence of both infi
sums~over direct and reciprocal lattice vectors! be equally
rapid. Letting A→` we obtain a much more transparen
although slower convergent formula for the square brack
on the RHS of Eq.~28!

@•••#5
4pn

k2 12pn(
G

8 F 1

kG
lnUk1G

k2GU2 2

G2G
2( uRu,R0

8
sinkR

kR2
1

2z

a
. ~29!

This expression explicitly reveals logarithmic singula
ties at k5G. They come from inelastic processes of on
phonon emission or absorption in the cases in which gi
wave vectork is close to a reciprocal lattice vectorG. To
prove this statement let us perform Taylor expansions
both exponentials in angular brackets in Eq.~3!. The one-
phonon processes correspond to those expansion t
which contain products of one creation and one annihilat
operator. Thus, in the one-phonon approximationS9(k,t
50) reads
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S1ph9 ~k,t50!5
e22W(k)

N (
i j

eık•(Ri2Rj )^~ ik•ûi !~2 ik•ûj !&T0

5
e22W(k)

N (
i j

(
n

\~k•en!2

2mNvn
eı(k2q)•(Ri2Rj )~2n̄n11!

5e22W(k)(
s

\~k•eqs!
2

mvqs
S n̄qs1

1

2D , ~30!

where the last summation is over phonon polarizationsq
5k2G is the phonon wave vector which is the given wa
vectork reduced into the first Brillouin zone by subtractin
an appropriate reciprocal lattice vectorG. In addition, in Eq.
~30! we have introduced an overall factore22W(k) which
comes from renormalization of the one-phonon probabi
associated with emission and absorption of any numbe
virtual phonons~e.g., Ref.@9#!. Now let us assume thatuk
2Gua!1 and average Eq.~30! over orientations ofk @inte-
grate over dVk /(4p)#. One can easily see that the importa
contribution into the integral comes from a narrow coneV0
aligned alongG. Let u0!1 be the cone angle chosen in su
a way thatGu0a!1, but Gu0@uG2ku. Integrating within
this cone, we can again adopt approximation of acoustic
longitudinal phonons and neglect the contribution of the
ters. For simplicity, we also assume that the sound veloc
of both acoustic branches are the same:vn5csuk2Gu. Then,
in the classical limit we come to the integral of the type

E
V0

d Vk

4p (
s51

2
~k•eqs!

2

vqs
2

'
1

4cs
2 H lnF kGu0

2

~k2G!2G21J , ~31!

which contains exactly the same logarithmic divergency
got in Eq. ~29!. Note that in the quantum limit we would
have similar integral but withv instead ofv2 in the denomi-
nator of the integrand. The integration would yield the e
pression proportional touk2Gu, i.e., the logarithmic singu-
larity would be replaced by a weaker kinklike featur
Therefore, thek5G features of the inelastic structure fact
S9(k) in the quantum limit are expected to be less p
nounced than in the classical limit but could be, neverthel
quite visible.

After this simplified consideration let us return to qualit
tive analysis. We have calculatedS29(k) in the classical limit
using the HL2 approximation as prescribed above and v
fied that the result is indeed independent ofR0 ~in the range
from ;30a to 100a) andA. The resultingS29(k) is plotted in
Fig. 3 by the solid line.

Thus, in a crystal, the inelastic part of the structure fac
S9(k) appears to be singular in addition to the Bragg~elastic!
part S8(k). The singularities ofS9(k) are weaker than the
Bragg diffraction delta functions inS8(k); the positions of
y
of

t

d
-
s

e

-

.

-
s,

i-

r

singularities of both types coincide. The pronounced sha
of the S9(k) peaks may, in principle, enable one to obser
them experimentally. The structure factorS(k) in the Cou-
lomb liquid ~see, e.g., Ref.@16#, and references therein! also
contains significant but finite and regular humps associa
with short-range order. This structure has been studied
detail by MC and other numerical methods. In contrast,
studies of singular structure factors in a crystal by MC
MD methods would be very complicated. Luckily, they ca
be explored by the HL model.

Finally, it is instructive to compare the behavior ofS9(k)
at smallk in the HL1 and HL2 models. It is easy to see th
the main contribution to inelastic scattering at thesek comes
from one-phononnormal processes@with q5k in Eq. ~30!#.
At thesek the HL2 S29(k) coincides with the one-phono
S1ph9 (k) and with the static structure factor of Coulomb liqu
~at the sameG) and reproduces correct hydrodynamic lim
@17#, S(k)}k2. The HL1 model, on the contrary, overest
mates the importance of the normal processes.

Let us mention that we have also used the HL2 mode
calculateg(r ). HL2 appears less accurate than HL but bet
than HL1. We do not plotg2(r ) to avoid obscuring the fig-
ures.

VI. CONCLUSIONS

Thus, the harmonic lattice model allows one to stu
static and dynamic properties of quantum and classical C
lomb crystals. The model is relatively simple, especially
comparison with numerical methods such as MC, PIMC, a
MD. The model can be considered as complementary to
traditional numerical methods. Moreover, it can be used
explore dynamic properties of the Coulomb crystals a
quantum effects in the cases where the use of nume
methods is especially complicated. For instance, the h
monic lattice model predicts singularities of the static inel
tic structure factor at the positions of Bragg diffractio
peaks. We expect also that the HL model can describe a
rately non-Coulomb crystals whose lattice vibration prop
ties are well determined.
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